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Free convection laminar boundary layers in 
oscillatory flow 
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The effect of harmonic oscillations in the magnitude of the surface temperature 
on the free-convection laminar velocity and temperature boundary layers on a 
flat plate is analysed. Low- and high-frequency solutions are developed separ- 
ately. The results obtained are in striking contrast to the corresponding results 
for forced-convection flows. 

1. Introduction 
The study of laminar boundary layers in oscillatory flow with a steady mean 

was initiated by Lighthill (1954) who considered the effects of fluctuations in 
stream velocity on the skin friction and heat transfer for plates and cylinders. 
Stuart (1955) in an attempt to verify certain results of Lighthill's analysis, dis- 
cussed the problem of flow over an infinite flat plate with suction, when the main 
stream oscillates in time about a constant mean, obtaining an exact solution of 
the Navier-Stokes equations. Lighthill in his paper had studied two particular 
cases of flow over a semi-infinite flat plate (Blasius layer) and of flow near a 
stagnation point (Hiemenz layer). Hill (1958) has studied the effects of free- 
stream oscillations on laminar boundary layers of Howarth (1938) flow. He has 
obtained three different solutions for low-, intermediate- and high-frequency 
ranges. For low- and high-frequency oscillations he has followed the method of 
Lighthill, but oscillations in the intermediate-frequency range required a different 
treatment. Further contributions on the subject have been made by Carrier & Di- 
Prima (1957), Nickerson (1958), Rosenzweig (1959), Rott & Rosenzweig (1960), 
Glauert (1956) and Watson (1959). The importance of the phenomenon of response 
of an otherwise steady laminar boundary layer to small disturbances need hardly 
be stressed. 

The present paper is devoted to a study of free-convection laminar boundary- 
layer flows from a vertical flat plate, when the plate temperature oscillates in 
time about a constant non-zero mean, while the free stream is isothermal. The 
treatment is restricted to small-amplitude oscillations only. This enables us to 
effect linearization of the equations. Two different solutions for low- arid high- 
frequency ranges are developed. It is found that in the low-frequency range, the 
oscillating component of skin friction always lags behind the plate temperature 
oscillations while the rate of heat transfer has a phase lead. In  the high-frequency 
range, the velocity and temperature in the boundary layer are of the 'shear 
wave ' type, predicting a phase lead of 45" in the rate of heat-transfer fluctuations 
and an equivalent phase lag in the skin-friction oscillations. 
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2. Basic equations 
Consider a heated vertical flat plate whose temperature oscillates about a non- 

zero mean, while the free-stream temperature is constant. The boundary-layer 
equations for an incompressible fluid are 

aii a% 
a2 ay 
-+= = 0, 

aT -aT -aT a%? 
-+u-+v- - a y ,  at ax ag - ay2 

where g is the acceleration due to gravity, /3 is the coefficient of volume expansion, 
a is the thermal diffusivity, and T ,  is the temperature of the free stream. 

Introducing dimensionless quantities 

1 (2.4) 
x = X/L, y = y/L, t = vi/L2, 

u = ZL/v, v = VL/v, G = (T - T,)/(TW - T,), 
where L is the characteristic length, i.e. [g/3(Tw - T,)/v2]-*, equations (2.1), 
( 2 . 2 )  and ( 2 . 3 )  become respectively 

and 

au au au a 2 u  

at ax ay ay2+'7 - 

au av 
ax ay 
-+- = 0, 

where (T is the Prandtl number and Tw is the constant mean temperature of the 
plate. 

The boundary conditions to be satisfied are 

y = 0: u = 0, v = 0, G = ( ~ + B c o s o ~ ) ,  Q 1;) 
(2.8) 

Y+CO:  u = O ,  G = O ,  I 
where w is the dimensionless frequency wL2/v.  

3. Method of solution 
In  solving the above differential equations it is convenient to adopt the com- 

plex notation for harmonic functions. The solutions will be obtained in terms of 
complex functions, the real parts of which will have physical significance. The 
plate temperature, which can be written as [Tw + e(Fw - T,) eiwl], consists of a 
basic steady distribution Tlv with a superimposed weak time-varying distribution 
e(TW - Tm) eiwt. 

We now write u, v and G as the sum of steady and small oscillating components: 

u = us + eul eiwt, 

v = v8 + evl eiot, 

G = Gs + sG, eid, 
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where us, us, Gs is the steady mean flow and satisfies 

aus av, 
ax ay 
-+- = 0, 

with the boundary conditions 

y = 0: u S = v s =  0, Gs= 1; 

y+m:  us-+o, G, -+ 0. 

(3.2) 

(3.3) 

Neglecting squares ofa and dividing by e iw t ,  we find that u,, v,, G, satisfy thefollow- 
ing differential set, 

aus au au, au, a Z u ,  

ax ax Y aY aY2 
~ W U ,  + u1 - +us> + T J ~  +us- = __ + GI, 

with the boundary conditions 

y =  0: u,= v,= 0,  G l =  1; 

y + m :  u1+0, G, -+ 0. 
(3.5) 

Equations (3.2) and (3.3) are the well-known boundary-layer equations which 
describe the steady-state free-convection flow past a vertical flat plate. These 
equations have been integrated numerically by various workers and their solu- 
tion is rather well known. We shall now solve the differential set (3.4) subject to 
the boundary conditions (3.5). As mentioned in the introduction two separate 
solutions will be obtained, one for small frequencies and the other for high 
frequencies. 

Low-frequency fluctuations 

It is convenient to write ul, v,, and G,  as the sum of in-phase and out-of-phase 
components. We substitute 

U ,  = U, + iu,, V ,  = V ,  + iv,, Gl = G, + iG,, (3.6) 

in (3.4) and separate real and imaginary parts to get 

au au, aus au, azu, 
ax ax ay  ay ay2 

- W U ~  +u, -' +us- + v,- +us- = ~ + G,, 

-+- = 0, au, av, 
ax ay 

aG, aG, aG, aG, 1 PG, 
- wG, + U, - -F U, - -F V ,  - + v,- = --, ax ax ay ay ay2 

(3 .7 )  

(3.9) 
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y = 0: U, = V ,  = 0, G, = 1 ;  
y -+ 0: u, -+ 0, Gr + 0, 

and 

au, av, 
ax ay 
-+- = 0. 

uG,+u -+u,-+v -+v >=---', aGs aG, aG, aG 1 a2G 
ax ax ay ay ay2 

(3 .10)  

(3 .11)  

(3 .12)  

(3 .13)  

with the boundary conditions 

(3 .14)  

The difference in phase between the longitudinal velocity and the temperature 
fluctuations at a point within the boundary layer and in the plate temperature 
fluctuations is a, = tan-l (u,/ur) and a, = tan-l (G,/G,). When the frequency of 
oscillation is low, it is to be expected that the phase shift will be small. Therefore 
one would expect u2 and G, to be small relative to u, and G,. Thus when o is small, 
the terms ( - ou,) and ( - wG,) can be neglected in (3 .7 )  and (3.9).  u,, v, and G, 
will then be the quasi-steady solution corresponding t o o  = 0. This can be seen from 
the fact that the same equations can be obtained by substituting u = us+ur, 
v = v, + v,, G = Gs + G, in the steady-flow boundary-layer equations. Thus, we 
easily find that 

u r  = oo(au,/aoo) v, = ~O(av,/aoo), G; = oO(aG,/ao,), (3 .15)  
where 8, = (pw - pm). It now remains to determine u,, v,, and G,. It is evident 
that the solution of the basic steady flow must be known beforehand. Squire 
(1953)  has given a simple solution of the basic steady flow using the Karman- 
Pohlhausen method. We shall use the same method to solve (3.11),  (3 .12)  and 
(3.13). Accordingly we assume the following expressions for u2 and Q,, 

u, = B,(q - 3q3 + 2q4), (3 .16)  
G, = Al(q - 3q3 + 274) + #pd2 (q2 - 273 + q*), (3 .17)  

where q = y/6, 6 being the dimensionless boundary-layer thickness. A ,  and B, 
are functions of x and are to be determined. The approximate expressions for us 
and G, as given by Squire are 

u s  = %7(1  - -TI2,  (3 .18)  
G, = (1 -q )2 ,  (3.19) 

where uZ = 5.17 [ Z / ( C T + ~ ) ] * ,  (3 .20)  
6 = 3.93 [(cr + E) " / c r 2 ] f .  (3 .21)  

Integrating (3 .11)  and (3.13) from y = 0 to y = 6 and using (3 .12)  and (3 .14)  we 
obtain the averaging conditions as 

y = 0: U, = v2 = G, = 0; 
y+w:  u2-+0, G2+0. 
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From these we determine the values of A ,  and B, as 

- ,/15wN( 132N2 + 216r + 953) z*, - 4 0 4  15N2 + 14) 
-297N2 + 112(14+ 3 4 %  A -  ' - - 2 9 7 N 2  + 112 (14 + 3 r )  

(3.24) 
where N = (r+$$. 

High-frequency oscillations 

For high frequencies, Lighthill has shown that the oscillatory flow is to a close 
approximation an ordinary 'shear wave' unaffected by the mean flow. The flow 
field can be described as a superposition of the steady mean flow and a 'shear 
wave' flow corresponding to the oscillating component of the plate temperature. 
The thickness of the steady boundary layer is large compared to  the oscillating 
boundary-layer thickness which is of the order (v/w)* and one can visualize 
the entire oscillating boundary layer as being contained within that region of the 
steady boundary layer wherein the non-linear inertia terms are negligible. 
Therefore, if the frequency is high enough, the differential set (3.4) reduces to 

(3 .25  ) 

from which we easily obtain 

4. Discussion of the results 

velocity and temperature may be written in the form 
When the frequency of the oscillation is small, the longitudinal component of 

u = us + eR, cos (at + a,), 

G = G8 + ER, cos (ot + a2),  
where 

R, = (u,"+uz)*, R, = (G,2+G?$, a, = tan-l(u,/u,), a2 = tan-, (G2/G,,). 

The velocity and temperature in 'shear-wave' flow are 

u = U, + (€R,/w( 1 - c)} cos (wt - a,), 

G = G, + €R4 cos (.At - a 4 ) ,  

R4 = exp { - (&m)*y}; 

a4 = (+~w)&y; 

(4.3) 

(4.4) 
where R3 = (P2 + Q2)*, 

a3 = tan-'(Q/P), 

P = exp { - (&J)* g} sin {(+w)* y} - exp { - (*or)* y) sin {(&wu)* y} 

Q = exp { - ($or)+ y} cos {($or)* y} - exp { - (&w)* y} cos {(*o)*y}. 

The functions u,, u2, G,, G, are exhibited in figure 1 for u = 0.73. Since B, is 
negative, u2 is always negative but u, is positive near the plate and negative near 
the edge of the boundary layer so that the phase angle is negative near the plate. 
Near the edge of the boundary layer the velocity fluctuations have a phase lead 
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over the plate-temperature oscillations. On the other hand, a2 is always positive. 
The amplitude and phase angle of the velocity and temperature profile in 
‘shear-wave’ flow are exhibited in figures 2 and 3. 

FIGURE 1. Function graph. 

Local heat transfer 

The local heat transfer from the surface to the fluid may be calculated using 
Fourier’s law q = - k(aT/ag) ,  = o .  Introducing dimensionless variables from 

The temperature gradient in ‘shear-wave’ flow is given by 

Re [eiwt(aG,/ay),,o] = - (wcr)i cos (wt + in). (4.6) 

Its amplitudeincreases with frequency andits phase is ahead of that ofthe fluctua- 
tions of the surface temperature by 45”. On the other hand, the wall velocity 
gradient in ‘shear-wave’ flow is given by 

Re[eiwt(au,/ay),,,] = {e/w*(cr*+ 1))cos (wt -an), (4.7) 
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FIGURE 4. Amplitude of oscillating wall temperatwe gradient. 
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FIGVRE 5. Phase angle of oscillating 
wall temperature gradient. 
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the amplitude of which decreases with frequency and its phase lags behind the 
plate temperature oscillations by 45". These results are in striking contrast to 
the case of forced-convection flow. For low-frequency oscillations we have 

Re[eiwt(i3Gl/~y),=,] = -{(oa)*xi8/3.93Nt}  (2$+Af)&cos ( w t +  $), (4.8) 

where $ = tan-l ( - $Al), x1 = xu2. 

The variations of amplitude and phase angle of the wall temperature gradient as 
a function of x1 are shown in figures 4 and 5. The corresponding asymptotic 
values are also shown. It may be observed that the phase angle approaches its 
asymptotic value when x1 N" 0.7. However, the amplitude attains its asymptotic 
value much more rapidly. The low- and high-frequency solutions may be matched 
on the basis of heat-transfer oscillations, taking the matching point as the 
frequency at  which the low-frequency solution predicts a phase advance equal to 
that of the shear-wave solution. Thus x1 N" 0-7 may be taken as the boundary 
between the regions of applicability of high- and low-frequency solutions. It is of 
interest to compare the temperature profiles obtained on the basis of low 
and high frequencies. The comparison is made in figure 6 for a value of x1 = 0.7. 

Overall heat transfer 

The overall heat transfer Q is also a quantity of engineering interest. It is given 
by 

bkv2x% 
Q = b  q&= [E + €(? + g A?)& cos (at + A)], J1: gpL4 (3.93) [a-l(l+ 20/2la)]4 

where h = tan-l( -&Al). 

Since A,  is always negative, the oscillating component of the overall heat trans- 
fer has a phase lead over the surface temperature oscillations. 

One of the authors (V.P.S.) wishes to express his thanks to the Council of 
Scientific and Industrial Research for financial provision for this research. 
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